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Abstract—Automotive security has gained significant traction
in the last decade thanks to the development of new connec-
tivity features that have brought the vehicle from an isolated
environment to an externally facing domain. Researchers have
shown that modern vehicles are vulnerable to multiple types of
attacks leveraging remote, direct and indirect physical access,
which allow attackers to gain control and affect safety-critical
systems. Conversely, Intrusion Detection Systems (IDSs) have
been proposed by both industry and academia to identify
attacks and anomalous behaviours. In this article, we propose
CANnolo, an IDS based on Long Short-Term Memory (LSTM)-
autoencoders to identify anomalies in Controller Area Networks
(CANSs). During a training phase, CANnolo automatically ana-
lyzes the CAN streams and builds a model of the legitimate data
sequences. Then, it detects anomalies by computing the difference
between the reconstructed and the respective real sequences. We
experimentally evaluated CANnolo on a set of simulated attacks
applied over a real-world dataset. We show that our approach
outperforms the state-of-the-art model by improving the detection
rate and precision.

Index Terms—Network security, intrusion detection system,
controller area network, deep learning, unsupervised learning.

I. INTRODUCTION

HE AUTOMOTIVE field has witnessed, over the past 30
T years, rapid adoption of electronics throughout all vehicle
systems that control most of the vehicle’s functionalities: from
automatic transmission to (adaptive) cruise control, up to all
of the types of assisted and autonomous driving technologies.

The majority of these systems consist of Electronic Control
Units (ECUs) interconnected to onboard vehicular networks,
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mostly based on the CAN bus [1]-[3]. CAN is considered
as the de-facto standard in automotive onboard networks [4]
and is also commonly found in other industrial applications.
Also, vehicles are now extensively connected to the out-
side world, through local (such as Bluetooth or USB ports)
and remote connection (mostly through data-enabled mobile
networks). The development and growth in the relevance of
onboard networked systems, and their interconnection with
the external world, has created a large attack surface (in a
pattern that has been witnessed already in other types of cyber-
physical systems, such as industrial control systems and IoT
devices [5]).

In the last decade, researchers have shown that it is pos-
sible to gain control of vehicles from remote and be able to
affect the safety of people inside and around the vehicle consis-
tently [6]—[8]. Koscher et al. and Checkoway et al. published
the two first analyses of vulnerabilities in vehicles [9], [10].
Their works prove both the inherent security challenges of
the CAN protocol both the feasibility of accessing the vehi-
cle onboard networks. At the same time, they made it clear
that some attacks on vehicles can be disruptive and danger-
ous for the safety of people on and around the vehicle. Since
Miller and Valasek’s demonstration on a Jeep Cherokee in
2014 [11], both industry — automotive manufacturers (denoted
as OEMs in the automotive world) and ECU vendors — and
academia have started to express concerns regarding vehicle
security [7], [8], [12].

Many countermeasures and Intrusion Detection Systems
(IDSs) have been proposed in the automotive domain based on
the consolidated knowledge acquired in the cybersecurity field.
Intrusion Detection Systems (IDSs) monitor the events in a
computer system or network for signs of intrusions. Generally
speaking in the automotive context countermeasures and IDSs
can be applied onboard of the vehicle or off-board to the
whole VANET or fleet (e.g., [13]-[16]). In the article at hand,
we define an intrusion as a malicious agent that has already
gained access to the CAN bus. Therefore our context is that
of onboard detection, intending to prevent the attacker from
implementing attacks abusing of their CAN bus access.

In this article, we propose CANnolo, a reconstruction-
based unsupervised IDS that exploits the power of LSTM
autoencoders for detecting anomalies in CANs. During a train-
ing phase, CANnolo automatically analyzes the streams of
data and builds a latent representation of CAN traffic data
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sequences using only legitimate data. Different from existing
approaches, CANnolo does not require knowledge about data
semantics. At runtime, CANnolo exploits the trained autoen-
coder to reconstruct CAN traffic and to predict the subsequent
sequences. Then, it detects anomalies in terms of the recon-
struction error, which measures the difference between the
forecasted and the real sequences.

We experimentally evaluated CANnolo on a publicly avail-
able real-world dataset. We show that our approach improves
the state-of-the-art solution by outperforming it in detecting
the categories of attacks for which these systems are designed.

In summary, our contributions are the following:

1) An unsupervised Intrusion Detection System (IDS)
based on LSTM autoencoders for CAN traffic that
automatically analyze streams of data — without prior
knowledge of its semantics — and detect anomalies in
terms of the reconstruction error between the real and
the forecasted data.

2) An extensive evaluation on a real-world dataset that
corroborate the effectiveness of our Anomaly Detection
System (ADS).

This article is structured as follows:

i Section II reports the necessary CAN properties and
the threat model required to comprehend the reasoning
behind CANnolo;

ii Section III presents the related works;

iii in Section IV the CANnolo approach is presented,
including a formal definition of the methodology regard-
ing the LSTM-base autoencoder and the anomaly
detector;

iv Section V presents the results, alongside those of the
state of the art model used to evaluate CANnolo’s
performances;

v Section VI discusses the conclusions.

II. BACKGROUND AND MOTIVATION

Since CANnolo’s approach directly relies on LSTM and
Autoencoders, a brief primer on the topics is necessary,
including a short excursus on attacks and security measures.
Moreover, this section will introduce some essential aspects
of CAN, precisely how data frames are structured, transmit-
ted, and how the arbitration mechanism works. For additional
details, we refer to the official CAN specification [3].

A. Primer on LSTM and Autoencoders

In the article at hand, CANnolo makes use of LSTM autoen-
coders, namely an implementation of autoencoders that uses
LSTM as learning layers.

On the subject of temporal analysis, Recurrent Neural
Networks (RNNs) are a category of neural networks that fea-
tures loops to feed process information to the network itself
in such a way that enables data persistence. Nevertheless, this
compelling point is also its major drawback, i.e., a limited
amount of time steps that can be stored. As pointed out by
Hochreiter [17], classical RNNs’ back-propagation algorithm
do suffer from the vanishing gradient problem, that is the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 2, JUNE 2021

C1 \ 'Ct
tanh
o /O
ht4 el hy
X forget gate input gate
Fig. 1. LSTM module layout. Rectangles represent layers, circles represent

pointwise operations. ¢ and tanh symbols represent respectively sigmoid and
activation functions. X;, C;, and h; are respectively ith input, cell-state, and
output.

progressive elimination of weights that are multiplied by small
numbers at each interaction.

One of the solutions to this issue is to deploy LSTM units.
As Figure 1 presents, a LSTM unit is a structure that permits
to memorize the cell state for further usages. To be precise,
the forget gate is used to decide how much of the previous
cell state should be retained or discarded, while the input gate
is used to decide how much of the new information should
be stored in the cell state. The LSTM structure, reported in
Figure 1, enables the update of the cell states with new and rel-
evant information. Finally, the last section of the whole module
filters the output. We refer the reader to Hochreiter et al.’s
work for further details [18].

With regards to the autoencoders, they are unsupervised
neural networks that are capable of learning how to encode
(usually compress) and then decode data. The strength of
autoencoders often stems from the compression; in other
words, the compression itself removes part of the data that do
not provide enough information. The training process forces
the autoencoder to remove only the noise and not relevant
information.

B. Primer on CAN

CAN is a bus-based network designed in the 80 by Bosch to
supply to the lack of communication between on-board vehicle
systems. Its main strengths and benefits are mainly cheapness,
real-time capabilities (up to a certain degree), and resistance to
electromagnetic noise. However, it lacks security and privacy
features.

Data frames carry the data payloads, while remote frames
are rarer and used to request information on demand. Error
frames are specific small sequences of bits that overwrite the
data frame they are referring to, thus notifying all nodes of the
error. Finally, overload frames are kept for backward compat-
ibility; their uncommon usage is that of forcing a delay in the
transmission of data in the case a node is not able to process
the received information fast enough.

The article at hand focuses on data frames as they are the
primary carriers of attacks. Although several other attacks have
been documented (such as error frames alongside the arbitra-
tion protocol), they are not the focus of this work due to the
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intrinsic differences in implementation and detection of such
attacks.

Data Frame Structure: Data frames are composed of sev-
eral fields, the majority of which are out of the scope of this
article. We will focus on the ID and data fields. The ID field,
which is 11 or 29 bits long, distinguishes data packets, and it
is positioned at the beginning of the packet. The ID does not
represent the sender node but the contents of the packet itself.
Each node can send messages with multiple IDs, but each ID
can be sent only by one node, which is an essential require-
ment due to the arbitration mechanism of CAN, explained
below. Nodes can read any packet from the bus since packets
are sent in broadcast, and the protocol does not provide any
form of encryption. The data field, which can be up to 64 bits
long, contains the data transmitted. CAN packets are mostly
used to send statuses, sensor values, and commands.

Therefore, the CAN data field is structured such that spe-
cific ranges of bits are assigned to a specific value, allowing
the receiving node to analyze them quickly. For example, ID
0x555 may be set up so that bits from 0 to 15 report the speed
of the vehicle, bits 16 to 19 are always zeroes, bits 20 to 23
describe the current gear, and bits 24 to 39 report the current
steering wheel angle. Every time ID 0x555 is transmitted, the
node that requires the information contained in the packet can
retrieve it and directly search for those bits.

C. Threat Model

Different attacks and threat models have been proven fea-
sible on CAN by many different researchers [7], [19]. We
present them according to the attacker’s goal.

o Sniffing: CAN is a broadcast protocol; any ECU con-
nected to the network can read all traffic passing through
the bus. Sniffing can be used to either forward data to a
malicious agent, learn the behavior of a target ECU, or
for other attacks. Generally speaking, this is an attack not
considered in defense mechanisms for CAN due to the
costs and often even feasibility of countermeasures.

e Forging: Although not meant to do so, each ECU can
potentially write on the bus using any ID and, hence, it
can impersonate any other ECU. Forging can be further
divided into Masquerade, Replay, and Fuzzing.
Masquerade: Means that a compromised component with
access to the network can inject data in the bus imper-
sonating a target ECU. It is the more general of the three
categories, where we can assume the attacker is creating
packets with a crafted data payload. The strength of this
category is that of giving the attacker the possibility of
sending any command.

Replay: Sniff previously transmitted messages to collect
data and retransmit it on the bus later. The purpose of
a replay attack is to reenact a previously seen state by
using the sniffed data. The strength of these attacks is
that they are harder to detect since they are intrinsically
compliant with the accepted messages.

Fuzzing: Consists of injecting random or partially random
messages. Although it is often not as efficient as other
techniques, it can be used when reverse-engineering is not
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possible. Fuzzing has proven to be a useful tool to explore
unexpected protocol behavior and can cause significant
damage in the vehicle [9].

e Denial of Service: The network as a whole, or its com-
ponents can be targeted to compromise their availability.
A Denial of Service (DoS) attack can be implemented
either on a network scale through flooding the bus with
high priority messages, hence always winning arbitration,
or on ECU scale, as demonstrated by Palanca et al. [20],
shutting an ECU off the network. Network-level DoS is
trivial to detect, while targeted DoS is harder but feasible
to detect, as proven in [21]. DoS by itself is also hardly
a final goal for an attacker since vehicles are usually pro-
grammed to not carry safety risks even in case the bus
goes offline. DoS is usually implemented as a first step
to implement a forging attack.

D. Motivation

Machine Learning (ML) solutions, and precisely Deep
Learning (DL) solutions have proven effective intrusion detec-
tion systems in the automotive field [22]-[24]. Autoencoders
are an intuitive approach in scenarios where the model needs to
learn to represent a time-series, in this specific case, the CAN
traffic ones. Previous work in this direction [23], [25], [26]
supports such intuition, and, as further explained in Section III,
time-series-based intrusion detection in CAN has brought
promising results through the use of LSTM. Furthermore,
reconstruction based detection has been proved [23] poten-
tially more efficient than prediction based detection when the
underlying data is inherently unpredictable.

Hence, the driver of this research is to build a model capable
of replicating sequences of non-malicious CAN data so that
when given as input CAN traffic, failing in reconstructing it
can indicate that an attack is taking place.

Autoencoders are, in theory, capable of learning what con-
stitutes authentic traffic by removing noise during the encoding
process, without the need for attack examples. Hence, once it
learns the non-malicious patterns of the data, anything that
would differentiate from it would be flagged as an anomaly.
Ideally, as long as the input is non-malicious, the ideal model
would always output the same sequence that was used as input.

In other words, the reconstructed traffic originated from
malicious sequences would present a high-degree of recon-
struction error, thus indicating an anomaly in the source
sequence. A post-processing module is thus required to pro-
cess this information and to generate a configurable anomaly
score that might indicate an attack.

III. RELATED WORK

Generally speaking, Intrusion Detection Systems (IDSs) can
be divided into two main categories [27], [28]: signature-
based and anomaly-based detection. Signature-based detection
uses supervised learning and assumes previous knowledge of
the attacks (i.e., a database of known attack signatures). It
examines ongoing traffic looking for messages that match
these signatures. However, in the automotive context, this
information is rarely available [29]. The database would be
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manufacturer-dependent, and additionally, real attack examples
on CAN are not publicly available. Therefore, signature-based
detection is often a non-viable solution. Anomaly-based detec-
tion, instead, uses an unsupervised learning approach, and it
does not require attack signatures examples to work. It creates
a baseline using exclusively legitimate traffic and evaluates
anomalies in terms of deviations from this norm.

Regarding CAN intrusion detection, multiple different meth-
ods have been proposed over the years. The most common one
are time/frequency based detection [30]-[34], which focuses
on incongruences in the periodicity of messages and is usu-
ally efficient in detecting attackers trying to overwrite periodic
messages. Frequency based detection is extremely effective
against attacks that increase the number of messages on the
bus, reaching detection rates close to 100%, but has a number
of downsides: Some CAN messages are not periodic, making it
intrinsically harder for these systems to detect attacks. Besides,
assuming that the attacker has the capability of silencing the
victim, which is hard but not impossible [20], [35], detecting
the attack is harder since the attacker becomes the only one
writing on the bus. Finally, Sagong et al. [36] prove that it is
also possible for attackers to simulate the exact arrival time of
the silenced victim, making it close to impossible to detect it.
Specification based detection [21], [37], [38], which analyze
and ensure that some specific rules are not being violated, and
usually does not defend from the majority of attacks but from
a specific kind. Evaluating the detection rate of these IDSs
is harder, since any attack aside the specific one that they
defend from is usually undetectable. Nonetheless they usually
reach extremely high detection rates on the specific attacks
they defend from. Signal based detection [39]-[41] exploits the
signal characteristics of CAN transceivers, in terms of finger-
prints, to identify the valid sender (ECU) of a packet. Although
in some cases the detection rate of these IDSs is high, they
are extremely dependent on the specific implementation of the
network they’re being used in, making it hard to use them in
a broad scale. Finally payload based detection [24], [42]-[44]
works by detecting anomalies in the payload of the packet,
and is usually effective against masquerade attacks, where the
attacker tries to change the payload with one that does not
respect some fixed or dynamic rules. The IDS usually recog-
nizes patterns inside the packet that, if not respected, trigger
the detection of the attack. For this reason these IDSs are
not particularly effective against replay attacks, which intrin-
sically respect said patterns, or against well forged attacks that
remains inside the boundaries of what is considered normal by
the IDS.

One of the newest approaches that have been implemented
to try to overcome the issues of the previously presented IDSs
is temporal analysis. In fact, CAN traffic payload can be seen
as a time-series, with its own natural temporal ordering, mean-
ing that analyzing anomalies in CAN traffic is a time-series
anomaly detection task. One of the main advantages of this
approach is that it aims to detect abnormalities in messages
that can be considered normal as individual observations, but
that are actually anomalous in the confext of surrounding mes-
sages, overcoming previous limitations such as the low results
of payload based IDSs in detecting replay attacks. In fact,
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it can detect values that are outside a norm model (outliers)
and also when they are out of context; as a simplified exam-
ple sudden unrealistic changes in speed but otherwise normal
absolute speed values, e.g., 1km/h to 100km/h in a second.
Another advantage of this approach is that it can be used
regardless of the periodicity of the CAN ID to be moni-
tored. Malhotra et al. [23] in particular prove the possibility of
using LSTM encoder-decoder architectures as reconstructors
(instead of the more intuitive predictors) to detect anomalies
in multi-sensor contexts.

Regarding time-series anomaly detection on automotive
networks, Narayanan et al. [45], and Levi et al. [46], pro-
pose an ADS by training a Hidden Markov model (HMM)
to learn the vehicle’s normal behavior and classify anomalies.
The intuition behind this approach is that a vehicle’s behavior
is considered as a sequence of finite events that are dependent
on the previous state, similar to a Markov process. However
the number of symbols that CAN IDs can produce is not neces-
sarily restricted to a fixed dictionary, rendering Hidden Markov
Models (HMMs) and Conditional Random Fields (CRFs) inad-
equate in most cases. Another interesting approach to temporal
analysis is the one of Stabili er al. [47] and of Groza and
Murvay [48]. They implement two machine learning algo-
rithms that focus on the hamming distance between two
successive packets to detect abnormalities. Although in some
specific contexts the IDSs have low performances, such as in
detecting replay attacks, the results in detecting masquerade
and fuzzing attacks are extremely promising.

Finally, RNNs have been shown to be effective modelers
in time-series analysis. They are considered to be a natural
fit when dealing with multivariate sequences, with no natural
restrictions on the symbols’ dictionary size, and even allowing
the use of arbitrary sequence lengths when using specialized
units. Taylor et al. [22], [49] proposed a system that trains
models as predictors of CAN traffic data, then it classifies
unexpected predictions as potential anomalies. This model
works by applying LSTM neural networks to learn the normal
sequences in the data. These models are trained to predict data
symbols given a set of normal sequences. An anomaly score
is computed based on the difference between the real and pre-
dicted data frame (i.e., the prediction error and it is used as the
anomaly detection metric. The authors also compared the pre-
dictor with a multi-step multivariate HMM, which is adapted
to handle high dimensional data. However, the detector strug-
gled with several ID with low word-variability, as well as,
short-lasting anomalies. The affinity between Taylor et al.’s
work and CANnolo makes it perfect as a comparison to show
CANnolo’s strengths.

IV. METHODOLOGY

In the article at hand, CANnolo consists of two main
components, namely an LSTM-based autoencoder, a train-
able model to learn the behaviour of normal signals, and
an anomaly detector, to analyze the reconstruction errors.
Figure 2 shows an overview of the autoencoder-based
Anomaly Detection System (ADS) inhere proposed. The idea
behind this schema is to create a reconstructed time series of
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Fig. 2. Overview of the autoencoder-based ADS.

CAN packets for each CAN ID that minimizes the reconstruc-
tion error so that a greater error rate would flag any potential
anomaly.

The anomaly detector works by computing the statistical
characteristics of reconstruction errors over a separate valida-
tion dataset; then, it assigns a distance score that indicates
how far a given reconstruction error is from the expected
normal distribution. Differently from the detector proposed
by Taylor [22] autoencoders do not use any validation data
with anomalous traffic to tune the anomaly signal. Instead,
the inhere proposed CANnolo is a completely unsupervised
approach to anomaly detection.

A. Model Architecture

The starting point for this research has been provided by
Malhotra et al. [23]. In their publication, the authors proposed
an autoencoder architecture with one single recurrent LSTM
layer for the encoder and one identical for the decoder.
Moreover, since the context of this research is of temporal
nature, and following the suggestions of Taylor [22] , the input
data features a rolling window of n CAN packets, as will be
discussed later in the section, the n hyperparameter is config-
urable. Experiments with n = 20,...,40 have been carried
out, leading to the decision to use 40 packets as the window
size. Each packet consists in at most k = 64 bits, where this
hyperparameter changes according to each CAN ID. To be
precise, for each ID, the condensed notation is used, i.e., the
constant bits are removed [REF].

Encoder and Decoder Hidden Layers: Designing a DL
network is a tedious and significant time-consuming task,
hence instead of starting from scratch, we picked the base
models presented by Malhotra et al. [23]. In their model,
the authors deployed two single recurrent layers, one for the
encoding and one for the decoding. During the search for a
better network layout, we tested several combinations of data
timesteps, layers, numbers of LSTM and GRU units (from
64 to 256), and anti-overfitting techniques (such as differ-
ent activation functions and weights, dropout layers [50] and
L1/L2 regularizers [51] among others). This search has been
performed, for each CAN ID, following the random hyperpa-
rameter search methodology, i.e., test a casual combination
of parameters to be tested against a validation set to find
the network with the lowest reconstruction error. The cho-
sen CANnolo architecture is the network with the on-average
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Fig. 3. Autoencoder architecture.
lowest reconstruction error across all IDs. Figure 3 presents
the architecture for the autoencoder.

Hence, CANnolo architecture is defined as follows:

¢ An input layer receiving a matrix of n = 40 CAN packets
x k bit for each ID. Notice that the size of k varies for
each ID since the compact notation removes the constant
bits.

o A dense layer, consisting of C = 256 units with hyper-
bolic tangent activation functions.

e A 20% dropout layer.

e Two recurrent LSTM layer with L = 128 units each.

The final layer provides two outputs, namely the encoder’s
output and the hidden states % (technically, this also contains
the cell states c).

Symmetrically, the decoder consists of:

o Two recurrent LSTM layers with L = 128 units each.

e A dense layer, consisting of C = 256 units with sig-
moid activation functions (to scale the results to the [0,1]
interval).

Autoencoder Postprocessing: The post-processing procedure
for the autoencoder is straightforward, and it does not require
evaluating parameter combinations. Following what proposed
by Malhotra et al. [23], [52], for each CAN ID, the recon-
struction error distribution is calculated using only legitimate
data from the validation set. The resulting mean p and covari-
ance X matrixes indicate the multivariate Gaussian distribution
of the non-anomalous data. A Mahalanobis distance between
this distribution and any given reconstruction error distribution
from a test sequence will suffice to identify an anomaly.

B. Training

For the autoencoder, the training phase consists of recon-
structing normal traffic data by minimizing the reconstruction
error between a given source sequence s() and a target
sequence y(t). The model is optimized with a 128 Adam
batch [53] and a binary cross-entropy loss function. Early stop
checks are in place in case the reconstruction error fails to
improve for 10 consecutive epochs.

For one thing, one may consider using the same source
sequence as the target. However, Sutskever et al. [54]
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demonstrated that sequence reconstruction performance
improves when reversing the symbols in the target sequence.
Experimental evidence demonstrates that there is no difference
in reversing the source or the target sequence.

For another thing, as demonstrated by Malhotra et al. [23],
the previous outputs from the decoders can be used as input
for the first layer of the decoder LSTM. Thus, during the train-
ing phase, the reconstructed sequence g}(t), alongside with the
hidden states 2(*) and cell states ¢(*), are stored and reinjected
in the next iteration ¢ + 1. On the contrary, during the testing
phase, the decoder is initialized with a vector of zeros.

Note that the source s and target y sequences are constructed
by shifting a n = 40 time window. Thus, each instant ¢, will
be included in at most n sequences (partially empty sequences
are discarded).

To formalize the notation, for any give time ¢, let:

e the source sequence s € X" be a vector

Tty ..., Ti4n—1 Oof n symbols;
o the target sequence y(t) € X™ be a vector consisting in
the same symbols as s(t), but in a reversed order, i.e.,
y(t) = Tt4n—1,---,21;
o the encoder outputs be:
- s'®) for the reduced sequence,
— 1™ for the hidden states, and
— ¢ for the cell states;
o the final reconstructed sequence (i.e., the decoder’s out-
put) be 5 =2, ... Zin_1.
Hence, the decoder input will be composed by the aforemen-
tioned sl(t), h(t), c(t), and a vector of n symbols i e xn,
This last piece is defined as:

o a vector of zeros if £ = 0 (i.e., i(™=0) = 0y, .

and,

e as the decoder’s output of the previous stage if t+ > 0
(e., i(t>0) = g(t=1)),

5 On—1),

C. Anomaly Signal Processing

The anomaly detection procedure consists in calculating
the Mahalanobis distance between two sequences. For a sin-
gle reconstruction, unlike Malhotra’s approach [23], a binary
cross-entropy function is employed. Early tests suggested that
this function is to be preferred to the absolute error function
used by the authors [23]. Formally:

—(Ek log(bg +€) + (1 - I;k) log(1 — bg) + 6)

where l;k is the k-th bit in the reconstructed sequence g}(t) and
by, is the k-th bit of the source sequence s(0).

Normal Reconstruction Error Distribution: A dataset con-
sisting only of legitimate data sequences has been used as
the baseline to establish the ‘normal’ behaviour for any
given CAN ID. The reconstruction error distribution has
been extracted from the join list of reconstruction errors as
described above. The distribution is thus fitted to a multivari-
ate Gaussian distribution, providing the mean p (of 1 X k
cardinality) and covariance matrix X (of k X t cardinality).

Anomaly Score: The anomaly score indicates the likelihood
of the test sequence to be anomalous. Similarly to [23], [52],
an anomaly score a is derived from the Mahalanobis distance
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Fit results: mu = 38.84, std = 512.65
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(a) Anomaly score distribution for test sequences with normal data.
Fit results: mu = 35634.70, std = 32220.53

0 20000 40000 60000 80000 100000

0.000025 4 L
0.000020
0.000015 4
0.000010 T

gl

0 20000 40000

0.000005

100000

0.000000

60000 80000

(b) Anomaly score distribution for test sequences with an interleave
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(c) Anomaly score distribution for test sequences with a replay attack
targeting a high variability field.

Fig. 4. Anomaly score distribution for various test sequences.

measuring the distance between a reconstruction error and the
distribution of normal/legitimate errors, and it is computed as
follows:

a=(e—mTE (e~ p)

where e is the reshaped reconstruction error vector.

Figure 4(a) presents three sample distributions.

Firstly, in Figure 4(b), the baseline reconstruction error is
presented showing that the distance between the source and
the reconstructed sequences are generally low.

Secondly, in Figure 4(c), an interleave anomaly is presented.

Finally, Figure 4 presents a replay anomaly. By comparison
with Figure 4(b), it is clear that the sequences are recognized
as legitimate but temporally misplaced (low reconstruction
errors interleaved with high reconstruction errors on anomaly’s
boundaries).

V. EXPERIMENTAL EVALUATION

In this section we describe the steps required to implement
the methodology presented above, alongside the analysis and
tests done to compare our solution to the current state of the
art. Specifically, we directly compare our results to those of

Authorized licensed use limited to: Politecnico di Milano. Downloaded on May 02,2024 at 14:35:22 UTC from IEEE Xplore. Restrictions apply.



LONGARI et al.: CANnolo: ANOMALY DETECTION SYSTEM BASED ON LSTM AUTOENCODERS FOR CONTROLLER AREA NETWORK

TABLE I
CLASSIFICATION OF IDS ACCORDING TO THEIR UNIQUE SYMBOL
COUNT IN THE CAN DATASET

[ Classification | N° of unique symbols |
Low variability < 100
Medium variability [100, 500]
High variability > 500

Taylor [22] (see Appendix A for a brief overview), since the
challenge that the two IDSs tackle is the same. After, we
proceed to make a short analysis of how the results change
if we test our system against real world attacks. We finally
present an analysis of the system requirements to implement
our methodology.

A. Dataset Overview

The dataset we used to test CANnolo is a 10 million packets
long real-world dataset retrieved from an Alfa Romeo Giulia
Veloce. The dataset has been generated while driving for an
hour in city and highway contexts multiple times, both at high
and slow speeds, with the goal to showcase the majority of the
possible values obtainable by each ID. For more information
we refer the reader to Zago et al. [55].

Following a hold-out validation approach, but keeping into
consideration the time dependence, we split our dataset into
three parts. We used the first 60% of the dataset for train-
ing CANnolo. We used the following 20% for validation. In
particular, we perform hyper-parameter tuning, and we fit the
distribution of reconstruction errors and the anomaly scores of
the legitimate CAN data. During this phase, we applied early
stopping to avoid overfitting. Finally, we used the lasts 20%
solely for testing: we injected the crafted anomalies into the
real-world dataset and evaluated CANnolo’s performance.

We consider only CAN IDs compatible with temporal-based
analysis [22]: with high frequency, high symbol variability, and
non-trivial symbol complexity (i.e., the percentage of unique
symbols is higher than 1%). The ID in our dataset that match
these characteristics are 12, specifically: 0ODE, 0EE, OFB,
OrC, OFE, OFF, 1F7, 1FB, 11C, 100, 104, 116.

Data Preprocessing: CAN data traffic, as directly logged
from the bus, is not suitable for training a machine learning
model. For these reasons, we first pre-process the dataset. To
do so, we apply the field classification algorithm presented by
Marchetti and Stabili in READ [56], with the improvements
and adjustments presented in [55]. The algorithm follows this
general procedure: it uses as an input the 64 bits of the data
frame; then, it calculates the rate at which each bit changes
value, and, based on this information, it divides the packet
in blocks that are considered to be a single piece of data.
The output includes the leftmost-bit (i.e., index), length, type
(i.e., multi-value, sensor, constant), category of the field (i.e.,
low/medium/high variability), and the number of unique sym-
bols. The category of the field as in Taylor et al. work [22] is
defined as in Table L.

B. Anomaly Generation

To test CANnolo, we artificially crafted anomalies by mod-
ifying the CAN data messages. The injected anomalies allow
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recreating the same data flows that would be present in the
attacks presented in Section II-C.

We consider mainly three different types of anomaly,
which are interleave, discontinuity and data field anomalies.
Interleave anomalies represent situations in which the attacker
starts sending messages on the bus without first silencing the
victim ECU. This would result in two parallel streams of
competing messages on the same ID, for example, messages
detecting the vehicle speed being both at both 50km/h and
120km/h at the same time. To implement this attack, we take
a sequence from a different time instance and we insert it
alternated with the correct one.

Discontinuity anomalies represent the case where an
attacker silences an ECU, hence creating a discontinuity in
the stream of data if IDs sent by said ECU. This attack is
implemented by removing small sequences of messages from
an authentic stream of data.

Both discontinuity and interleave anomalies would,
although, cause an abnormality at the rate in which mes-
sages appear in the CAN bus, assuming these are periodic.
Therefore, they could be efficiently detected by frequency-
based methods. However, we consider them for completeness
as they alter the normal flow of a data sequence, and, hence,
they can be easily detected by CANnolo.

Our threat model (see Section II-C) also includes cases
where data frame contents are directly modified. To test them,
since we do not have knowledge of the effective meaning
of each bit of all the tested IDs, we employ a fuzzing-like
approach, following a similar procedure of Taylor [22]. As
Taylor et al. did, we define five different modifiers functions:
set the field of the packet to its maximum value, minimum, a
constant, a random value, or replaying a previous value found
in the dataset. We refer to these anomaly tests as data field
anomalies. In general, it is hard to recreate attacks without
being capable to know the actual meaning of the attack itself.
This is a common problem while testing automotive security
measures, since often there’s no documentation available to
describe the function of a field of a packet. We claim that using
this five different modifier functions we still cover the major-
ity of realistic cases, since the attacker’s goal may lead him
to force a specific value, potentially close to the boundaries of
the accepted ones but without crossing said boundaries (min-
imum, maximum and constant value functions), or to replay
previous sequences to lower detection rates (replay) or to try
a fuzzing attack to trigger unexpected behaviors (random).

An anomaly we purposefully did not consider is the alter-
ation of bits that are meant to be fixed in the packet. Although
the alteration of such bits may indicate an exploitation attempt,
we consider the task of detecting such anomalies trivial
through rule-based and not machine learning-based IDSs.

C. Experimental Settings

We perform the experiments using continuous and non-
overlapping data sequences. Each sequence is 3 seconds long
and contains 300 observations since all the CAN IDs we
considered have a message frequency of 10 milliseconds.
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TABLE 11
NON DATA-RELATED ANOMALY AUC
FOR BOTH IDSS

[ [ Interleave [ Discontinuity |
Predictor | CANnolo | Predictor | CANnolo
ODE 1 1 0.9996 1
OEE 1 0.9846 0.9939 0.9437
0FB 1 1 0.9938 1
OFC 1 1 0.9921 1
OFE 1 1 0.9998 1
OFF 1 1 0.9911 1
1F7 0.9935 1 0.9563 1
1FB 0.9894 1 0.9961 1
11C 0.9982 1 1 1
100 1 1 0.9957 1
104 0.9965 1 1 1
116 1 0.9997 0.9974 0.7892
[ avg [ 0.9981 [ 0.9986 [ 0.9930 [ 0.9777 ]

For each anomaly type, we create a new set of test
sequences. For the data field anomalies we keep 60% of the
validation dataset as legitimate sequences; the remaining 40%
is altered using the anomaly functions, which are different
functions that we used to generate the data anomalies, specif-
ically: set to maximum, set to minimum, set to a constant, set
to random value, replay field.

Four duration values for the anomalies are evaluated: 0.2,
0.5, 1, and 1.5 seconds. The anomaly starting time is chosen
at random, but not earlier than one-third of the total length of
the test sequence and early enough to accommodate the entire
anomaly duration. This allows us to evaluate the impact of the
duration time for each anomaly.

Note that Taylor et al. in their experiments implemented
field anomalies in a way that only targets sensor fields. In this
work we removed this restriction so we can better evaluate the
detector performance using a greater range of fields.

D. Experimental Results

We proceed to present the results and comparisons between
CANnolo and Taylor [22]. As explained above, the first two
anomalies (interleave, discontinuity) are intrinsically different
from the last one (data field anomaly). Therefore, we evalu-
ated them separately as sequence-based and data field-based
anomalies. We use the Area Under the Curve (AUC) as the
performance metric to compare CANnolo with Taylor et al.’s
detector.

1) Sequence-Based Anomalies:

Interleave Anomalies: The AUC for every ID is presented
in Table II as well as the average performance for both detec-
tors. These anomalies were the easiest to detect because of
the noticeable impact they have in the data stream. Half of
the symbols in the sequences are drawn from a pool of dif-
ferent points in time. Hence, each anomalous sequence has
half of its symbols from a completely different context. Both
detectors score very high AUC values.

Discontinuity Anomalies: Both detectors yield significantly
good results overall, as visible in Table II. However, on aver-
age, Taylor et al. obtained a higher AUC, albeit slightly. The
main factor contributing to this result come from a specific ID
(116), for which CANnolo performed poorly with an AUC of
0.789 while the predictor achieved 0.997. Through a visual and
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TABLE III
AUC DIFFERENCE BETWEEN CANNOLO AND TAYLOR et al.’S
DETECTOR FOR ALL DATA FIELD ANOMALIES, FOLLOWED
BY THE OVERALL AUC FOR BOTH

[ D [ AUC difference |
ODE 0.0090
OEE 0.0093
OFB 0.0327
OFC 0.0729
OFE 0.008
OFF 0.006
1F7 -0.0305
1FB 0.1913
11C 0.0067
100 -0.0049
104 0.0551
116 0.0822

Overall
CANnolo Taylor et al
0.967711 0.932265

statistical analysis of the data we can claim with a good level
of certainty that ID 116 is composed almost if not completely
of counters. Although we could not find another ID with simi-
lar properties, what we assume is that given the repetitiveness
of said fields, CANnolo remains fairly capable of reconstruct-
ing the time-series even when there is a discontinuity in the
middle of the packet, hence not increasing the reconstruction
error enough to easily distinguish between attacks and valid
data sequences. Nonetheless we are satisfied with the results
since, as explained above in Section V-B these anomalies are
mainly evaluated for completeness.

2) Data Field-Based Anomalies: In Figure 5, we illustrate
a direct comparison between the detectors for each ID, we
observe that in 7 out of 12 cases performance was very simi-
lar as there’s an AUC difference less than 0.02. However, for
4 IDs the difference was more significant, with AUC improve-
ments ranging from 0.05 to 0.19 as also shown in Table III
alongside the average AUC results for all IDs over all data
field anomalies, showing that CANnolo highly outperforms
Taylor et al.’s predictor.

Analyzing the results for each ID allows us to discern
trends that are otherwise obfuscated by overall results, par-
ticularly when the detectors have similar performance across
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TABLE IV
OVERALL AUC OF THE DETECTORS GROUPED BY ANOMALY FUNCTION

[ Anomaly function [ Taylor et al.’s Predictor [ CANnolo |

Max 0.9341 0.9440
Min 0.8986 0.9264
Constant 0.9508 0.9514
Random 0.9908 0.9944
Replay 0.8087 0.9521

the parameter space. To better illustrate the performance of
the detectors under analysis, we take ID 1FB as an exam-
ple, which is illustrated in Figure 6. We chose this ID as it
presents the most significant improvement of CANnolo with
respect to Taylor et al.’s detector. We observe that the type of
anomaly influences the performance of the detector. In partic-
ular, for ID 1FB, the CANnolo performs significantly better
for every duration when testing for field replay anomalies.
The detectors share good results in several scenarios. For ID
1FB, we can observe that Taylor et al., eventually catches up
with the autoencoder with longer-lasting anomalies. However,
the performance gap at shorter durations is quite significant,
even yielding an AUC difference of 0.49. In this particular
case, Taylor et al.’s predictor performs slightly better than just
making a random choice on whether or not the sequences are
anomalous.

Influence of the Anomaly Function: We evaluate if there is
a relation between the anomaly function and the performance
of the detector. We combine the AUC of all IDs and group
them by the anomaly function, as presented in Table IV. We
can observe that performance is relatively similar between the
detectors, yet CANnolo always resulted as the highest per-
former overall. However, we can point out a clear pattern,
CANnolo is significantly better at detecting replay anomalies
than Taylor et al.’s predictor. The difference between their
respective AUCs is 0.15.

Influence of Field Variability: In Table V, we see the average
AUC results for all IDs, grouped by the field target variabil-
ity. We see that in this framing, CANnolo on average performs

TABLE V
OVERALL DATA FIELD AUC ANOMALY RESULTS
DIVIDED BY FIELD VARIABILITY

[ Field variability | Taylor et al.’s Predictor [ CANnolo |

Low 0.9239 0.9741

Medium 0.8837 0.9106

High 0.9594 0.9754
TABLE VI

OVERALL DETECTOR AUC ANOMALY GROUPED BY ATTACK DURATION

[ Anomaly duration (s) [ Taylor at al.’s Predictor | CANnolo |

0.2 0.9003 0.9260
0.5 0.9084 0.9535

1 0.9241 0.9648
1.5 0.9336 0.9704

better. One of the most remarkable results is the improvement
of attacks targeting low variability fields. Taylor er al. high-
lighted that their detector performed worse using fields of low
variability, and on high variability cases, it performs best. Our
results partially confirm this conclusion.

Influence of Duration: The duration of an anomaly has a
clear impact on the performance of the detector, as can be
seen in Table VI. For both detectors, longer anomalies result
in higher AUC values. By grouping variability and duration,
as illustrated in Figure 7 and in Table VII, we can confirm
CANnolo performs significantly better on average for all short-
lasting anomalies that target low variability fields.

E. Real-World Attacks Results

Since all the attacks proposed above have been simulated
using a set of given patterns, one may claim that they do not
closely represent the behavior of an actual attacker. Although
we do consider them a good representation, proving that
more targeted attacks can be detected anyway just strengthens
CANnolo’s position. For this reason we created three different
attacks that are meant to simulate a knowledgeable attacker on
the ID that carries the speed signal of our vehicle (as explained
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TABLE VII
AUC RESULTS GROUPED BY ANOMALY DURATION AND TARGET FIELD CATEGORY. BLANK CELLS INDICATE THAT A RELEVANT FIELD DOES NOT
EXIST. P STANDS FOR THE PREDICTOR RESULTS, AND AE. STANDS FOR THE AUTOENCODER RESULTS

Low var. Mid var. High var.

ID 0.2(s) 0.5(s) 1(s) 1.5(s) 0.2(s) 0.5(s) 1(s) 1.5(s) 0.2(s) 0.5(s) 1 1.5(s)
ODE P. 0.9721 0.9725 0.9772  0.9795 0.9520 0.9764  0.9879 0.9914
AE. 0.9819 0.9944  0.9996  0.9997 0.9560 0.9832  0.9897 0.9910

OEE P. 0.9870 0.9749  0.9878  0.9888
AE. 0.9911 0.9957  1.0000  0.9994

OFB P. 0.9561 0.9553  0.9013  0.9640 0.9903 0.9905 0.9920  0.9940
AE. 0.9989 1.0000  0.9983  1.0000 1.0000 1.0000  1.0000  1.0000

OFC P. 0.9376 0.9419  0.9456  0.9475 0.7119 0.7104  0.7396  0.7566 0.9855 0.9924  0.9933  0.9941
AE. 0.9942 0.9976  0.9951 1.0000 0.8490 0.8974  0.8837  0.9203 1.0000 1.0000  1.0000  1.0000

OFE P. 0.9252 0.9377  0.9432  0.9504 0.8965 0.9019  0.9047 0.9107 0.9966 0.9998  0.9991  0.9997
AE. 0.9044 1.0000  1.0000  1.0000 0.8289 0.9063 0.9913  0.9924 1.0000 1.0000  1.0000  1.0000

OFF P. 0.9502 0.9603  0.9635 0.9667 0.7677 0.7515  0.8253  0.8245 0.9573 0.9737  0.9803  0.9827
AE. 0.9754 0.9997  1.0000  0.9993 0.7768 0.7519 0.8136  0.8352 0.9304 0.9893  0.9951 0.9981

1E7 P. 0.9326 0.9367 0.9439  0.9521 0.9081 0.9425 09734 0.9744 0.8734 0.8760  0.8796  0.8778
AE. 0.9039 0.9157 09198 0.9133 0.8442 0.8793  0.9148 0.9397 0.8306 0.8475 0.8565 0.8706

IFB P. 0.5970 0.7031  0.9005  0.9909
AE. 0.9507 0.9980 0.9979  0.9979

11C P. 0.9168 0.9149 09191 0.9212 0.9879 0.9894  0.9918 0.9934
AE. 0.8272 0.9841  0.9978  0.9998 0.9918 0.9990  0.9999  1.0000

100 P. 0.9822 0.9882  0.9906 0.9954
AE. 0.9745 0.9778  0.9873  0.9964

104 P. 0.8179 0.8174  0.8205 0.8218 0.9559 0.9579  0.9609  0.9607 0.8939 0.8881  0.9001  0.9026
AE. 0.9884 0.9995  1.0000  1.0000 0.9670 0.9759 09719  0.9802 0.8941 0.9014  0.9020 0.9020

116 P. 0.7599 0.7954  0.8579  0.8748 0.9973 0.9976  0.9978  0.9993
AE. 0.9508 0.9854  0.9938  0.9869 0.9982 0.9988  0.9995 0.9977

Ave P. 0.9016 0.9096 0.9214  0.9268 0.8660 0.8699  0.8842  0.8985 0.9334 0.9458  0.9667 0.9758
AE. 0.9408 0.9846 0.9883 0.9874 0.8775 0.9018 0.9289  0.9446 0.9598 0.9742 09773 0.979%4

TABLE VIII
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Fig. 7. Overall detection AUC, grouped by variability and duration. The first
letter stands for the target field variability (Low, Medium, and High), and it is
followed by the anomaly duration in seconds. In blue Taylor et al.’s Predictor,
in red CANnolo’s.

in [55]). The first attack simulates a replay attack of a single
packet, repeated frequently as an attacker would do to force
the vehicle to consider his value over the non malicious one
passing on the bus. The second attack, slightly more complex,
simulates an attacker sending a stream of data on the bus with
a value changing in a realistic way, while the non malicious
value still passes on the bus. Finally, the last and more com-
plex attack has the attacker completely taking control of the
bus in a random moment in the middle of the time-series, and
then sending a sequence of coherent data (replaying a previous
sequence). Since our attacks had to be realistic, we took inspi-
ration from Seo et al.’s [57] dataset, available here [58]. As

TARGETED ATTACKS

[ Attack [ Precision | Recall | Flscore | AUC |
Single replay 0.9017 1 0.9483 | 0.9853
Forced changing data 0.9017 1 0.9483 0.9901
Complete overwrite 0.9017 1 0.9483 0.9901

visible in Table VIII, the results in all three cases are extremely
close to the ones obtained above.

F. Computation and Timing Analysis

The memory requirements for CANnolo depend on the spe-
cific loaded model, but generally float between 300 and 800
Mb. After loading the model, the actual memory usage for a
single time-series reconstruction is lower than 10 Mb, making
it negligible in relation to the overall requirements. We tested
CANnolo’s performance on a 2014 3.5ghz single core proces-
sor. It is hard to retrieve valuable information on the actual
types of processors used in new vehicles’ infotainment systems
and highest-end ECUs, but we claim that given the nowadays
low cost of computation and the new devices presented by
automotive chip manufacturers like Tesla and Nvidia [59] with
multi-core high frequency architectures, our testbed is realis-
tic. Especially considering that CANnolo should be installed
on one single ECU. The average computation overhead for a
time-series is 0.65 seconds, with worst cases taking up to 0.95
seconds if no bits can be removed from the packet. This makes
CANnolo react fast, but potentially not fast enough for strong
real-time requirements. This said, we have to consider that ML
based IDSs should not be used for safety critical reactions in
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Fig. 8. Overview of the predictor algorithm.

vehicular environments, due to the fact that it is extremely hard
to prove their complete lack of false positives, hence ensuring
that the IDS cannot become a threat to the safety of the pas-
sengers. Overall, we consider CANnolo an extremely valuable
asset for non strong real-time intrusion detection in vehicular
networks.

VI. CONCLUSION

In this article, we presented CANnolo, a novel IDS based
on LSTM autoencoders designed for automotive on-board
networks. CANnolo works in completely unsupervised learn-
ing fashion, where no attack data was used to either train or
fine-tune the detector.

Overall, CANnolo showed better performance than the
state-of-the-art model by improving the detection rate and
covering its main weaknesses. To evaluate our approach, we
compared it to a state-of-the-art anomaly detection system
designed for automotive data, on a set of simulated attacks
applied over a real-world dataset. Through our experiments,
we observed that CANnolo is a suitable modeling technique
for CAN traffic data, as it can successfully model time-series,
with no assumptions on time-series characteristics. These
include whether the signal is predictable in some way, or more
generally, its stationarity.

CANnolo’s biggest limitation has to be its relatively slow
computation. In future works, the first aim should be that of
obtaining the same results while creating an overall lighter
system. It is also of extreme interest the study of correla-
tion between different IDs, since correlating IDs that carry
non-independent data has already been proven useful in intru-
sion detection. Nonetheless, correlation between different data
over time does increase the complexity of the system, poten-
tially increasing an hypothetical reaction time. A future work
would focus on studying the most lightweight system capable
of correlating data from different IDs.

APPENDIX A
TAYLOR et al.’s APPROACH

Since we confront with Taylor et al.’s work [22] we deem
that a brief overview of their system is needed. As presented in
Section III it is an LSTM based RNN which act as a predictor
of the next sequence, as shown in Figure 8. Their network is
composed of two hidden layers each with 128 units, and with
two LSTM layers each composed of 512 units. To calculate the
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TABLE IX
SYMBOL SCORE AND COMBINATION RESULTS FOR ALL IDs

ID Symbol output
0DE, OEE, OFB, OFC,
OFF,11C,100,104

0FE, 1F7, 1FB

116

Symbol combination

Max bit loss Rolling window

Max bit loss
Average bit loss

Maximum symbol loss
Average symbol loss

final anomaly score they tested different techniques depending
on which one is the most efficient for the specific ID.

APPENDIX B
MODIFICATION OF TAYLOR et al.’S APPROACH

While reimplementing the work done by Taylor [22] we
made some minor modifications due to performance in the
postprocessing of the input data. Although we do not consider
these modifications to significantly change the performances,
we still deem necessary to notify the reader about them:

While choosing the best match of symbol scores and com-
bination methods for all the IDs we analyzed, we discovered
that there is no single best match. We used anomalous traffic
samples from the validation dataset to choose the combination
of symbol scores and combinations that maximises the AUC.
In Taylor et al.’s works [22], [49] the maximum loss symbol
score was considered to perform best for all CAN IDs, how-
ever, when we replicated the experiment with our own data
the result were more varied. For each ID we computed the
AUC for every anomaly type using all possible output process-
ing methods, the combination that performed best overall was
chosen. The final results included a combination of the sym-
bol scores: maximum and average, with combination scores:
rolling window, log sum, maximum, and average.

The best combination results can be seen in Table IX. These
are the anomaly signal outputs which indicate an anomaly
score for a given test sequence.
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