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Abstract—In the last few decades, technological progress has led to a spike in the adoption of robots by the manufacturing industry.
With the new “Industry 4.0” paradigm, companies strive to automate their production processes by interconnecting and integrating
different industrial systems. The resulting increase in complexity contributes to a larger attack surface and paves the way for novel
attacks. In the context of cyber-physical systems, consequences include economic and physical damage, as well as harm to human
workers. In this paper, we present Janus, a novel monitoring mechanism for industrial robot controllers that exploits the trusted
execution environment (TEE) to guarantee the integrity of the attack detection algorithm even in case the controller’s software is
compromised, while not requiring external hardware for its detection process. In particular, we use the state observers strategy for
detecting low-level controller (LLC) attacks.
We assess our approach by testing it against various attacks, identifying those that are simpler to detect and pinpointing the more
elusive ones, which are mostly detected nonetheless. Finally, we demonstrate that our approach does not add significant computation
overheads.
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1 INTRODUCTION

INDUSTRIAL robots play a crucial role in the modern
industrial world, as they can increase manufacturing effi-

ciency, reduce cost, and increase output quality. The global
number of units in operation has nearly tripled in the last
ten years, and growth shows no signs of stopping [1]. Most
industrial robots are capable of fast, powerful, and pre-
cise movements, which compose safety hazards to factory
workers. Traditionally, risks have been mitigated by letting
industrial robots operate in cages, isolated from human
operators by physical barriers.

However, technical advances are leading to increased
use of collaborative robots, or cobots, which operate in a
shared workspace alongside human workers [2, 3]. These
robots heavily rely on software features to ensure safety
[4, 5]; hence, an attacker that gains control over the robot
software may bypass these safety measures, allowing the
robot to perform dangerous and unexpected movements.
Recent digital transformation has resulted in “smart fac-
tories” adopting increasingly complex and interconnected
machines. Benefits of connected robots include the ability
to program, control, and continuously monitor them at a
remote location, improving efficiency and minimizing pro-
duction downtime. However, these innovations come at the
cost of an increased attack surface that could enable attack-
ers to compromise devices in ways that were not feasible
before. What is more, many machines that are currently part
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of interconnected factory networks - or worse, exposed to
the Internet - were initially designed to work in isolation
and lack proper security measures or mitigation strategies to
existing vulnerabilities [6]. The most sensitive component of
an industrial robot is the controller. Nevertheless, almost no
research from the current state of the art deals with solutions
against controller attacks that aim to preserve the flexibility
that characterizes industrial robots.

Existing works detect such attacks through host-based
intrusion detection systems, without tackling the issue of
deploying the IDS. However, it has been demonstrated
that an attacker can obtain code execution on the robot,
compromising its functionalities [6, 7, 8]. Given that TEE-
based technologies are spreading in the context of industrial
microcontrollers and are considered an effective hardware-
based security solution in modern microprocessors, we
deem it necessary, for the security community to study and
understand all the novel ways in which they can be applied
as a countermeasure.

To bridge this gap, we present Janus, a novel approach to
the security of robot controllers that makes use of the trusted
execution environment (TEE) implemented in modern mi-
crocontrollers to guarantee the integrity of the detection
system even in the case its software is compromised without
requiring additional hardware. For the detection of attacks
in the LLC, we adopt a widely used strategy in robotics for
collision detection [9], based on state observers, and exploit it
as an attack detection mechanism for industrial robots. By
leveraging TrustZone, differently from existing approaches,
we ensure the security of our attack detection algorithm so
that its detection capabilities remain intact even in case the
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LLC software is completely compromised, while eliminat-
ing the need for implementing the system on a separate
machine.

We implement our solution using Matlab/Simulink and
test it against several different attacks. Results show that the
proposed system can effectively detect attacks that threaten
the surrounding environment, human operators, and the
robot itself. Attacks that slowly diverge from the expected
trajectory are the most difficult to detect, representing a
limitation in high-precision applications where tolerances
on the robot trajectory are particularly tight.

Overall, this work brings the following contributions:
• A novel approach that leverages the security capabili-

ties of the trusted execution environment (TEE) found
in modern MCUs to ensure the integrity of a LLC attack
detection system for industrial robots, with the system
being implemented on the same hardware that it aims
to protect.

• A novel application of the state observer strategy for
detecting attacks against the low-level components of
industrial robot controllers.

• A quantitative experimental evaluation of Janus in
terms of accuracy, time to detection, and maximum
trajectory deviation on a simulated scenario and on a
physical, TrustZone-equipped development board.

The rest of the paper is structured as follows: in Section 2
we introduce the main concepts related to industrial robots
and we briefly present the Arm TrustZone technology. In
Section 3 we compare several proposals from the current
state of the art, highlighting their strengths and limitations.
Section 4 illustrates the threat and attacker models consid-
ered for our solution. We describe our approach and the
architecture of our system in Section 5. Then, in Section 6 we
detail the experimental validation of our system and discuss
the results. Finally, we present our conclusions in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Industrial Robots
Industrial robots are mechanical, multi-axis arms operating
under computer control [10, 11]. Their main mechanical
component is the manipulator, which consists of multi-
ple segments (links) connected to one another by motor-
powered joints. The manipulator allows moving objects with
several degrees-of-freedom (degrees of freedom (DOF)),
depending on the number of joints. From a system’s dy-
namics perspective, each joint state can be described by its
position, velocity, and acceleration, which are constantly
measured by sensors reporting data to the controller. An
end effector (consisting of grippers or other specialized tools)
is connected to the manipulator’s end effector to interact
with the environment. Industrial robots can be programmed
either using a teach pendant or offline, with a proprietary
programming language that allows users specifying robot
movements using Cartesian coordinates. The robot controller
performs the computational and power functions required
to operate a robot [12]. It can be split into a high-level
and a low-level controller (HLC and LLC, respectively). The
former usually consists of an x86 processor-based computer
running a real-time operating system. It works in an open-
loop fashion, and it computes each joint’s target state at

each time instant, following programmed instructions. The
LLC is microcontroller-based, and it implements a closed-
loop control system that finely adjusts motors torques to
constantly keep each joint at its target state.

2.2 Arm TrustZone
Our Proof of Concept (PoC) is based on ARM TrustZone,
which is a hardware security extension of the Arm proces-
sor architecture that leverages the principle of security by
isolation. The processor is partitioned into a secure world and
a normal world. Strong isolation between the two worlds is
enforced at the hardware level so that software running in
the normal world is unable to access resources belonging
to the secure world. The partition is done by mapping the
memory addresses such that they can be accessed from
one or the other state. Since microcontrollers’ peripherals
are mapped as memory addresses, it is possible to deny
access to their data from the non-secure state if needed.
By doing so, TrustZone enables developers to implement
critical operations in a secure environment without having
to trust existing software, such as the operating system.

After having become available for application processors
(Cortex-A) for several years, TrustZone has been added to
Cortex-M microcontrollers as well, optimized for low-power
and real-time systems. Memory addresses and interrupts
can be configured to belong to either the normal or the
secure world. Non-secure interrupts can be deprioritized or
disabled entirely during execution in the secure world so
that software running in the normal world cannot disrupt
security-critical processes [13].

While multiple vulnerabilities have been found for Trust-
Zone [13, 14], to the best of the authors’ knowledge all such
vulnerabilities are related to existing bugs in the TEE kernel
and TEE drivers implementation of some providers, or they
are vulnerabilities in systems built on TrustZone, rather than
being inherent issues in the TrustZone technology itself.

2.3 Motivation
With this paper, we aim to address the scarcity of solutions
to ensure the security of attack detection algorithms in
industrial robot controllers. Our goal is to design a moni-
toring system that leverages a Trusted Execution Environ-
ment to preserve the integrity of the detection algorithm,
ensuring that its effectiveness remains uncompromised. Our
approach needs to reliably determine if the robot behaves
as expected or if its movements differ from those required
to carry out the current task. We design our system to be
flexible enough not to need a reconfiguration when the
robot task changes. To the best of our knowledge, this work
is the first to implement such system on industrial robot
controllers.

3 RELATED WORKS

In the context of physics-based attack detection techniques
against cyber-physical systems (CPSs), most of the current
literature focuses on attacks that target sensors, actuators,
and physical signals on the network [15, 16, 17]. Several
works deal with the problem of state estimation when a
subset of sensors is under attack, and algorithms exist to
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efficiently tell malicious and legitimate sensors apart [18,
19, 20, 21]. Some solutions propose physical watermarking
and challenge-response mechanisms to authenticate sensor
and actuator signals [22, 23, 24], while others concentrate
upon ensuring the stability of the physical system subject to
attack [24, 25].

Few studies deal with the detection of attacks against the
controller, and most of them are only applicable to industrial
robots with the assumption that the robot performs a single
repetitive task [26, 27, 28]. Since they require a reconfigura-
tion or recalibration each time the robot task changes, their
versatility is significantly limited.

Recently, Pu et al. [29] studied the correlation between
the movements of an industrial robot and its power con-
sumption, and trained an artificial neural network to detect
anomalies caused by attacks. To the best of our knowledge,
their approach is the only one capable of detecting attacks
against the robot controller independently of the robot task.
Nevertheless, the system was only tested against anomalies
at a macroscopic level, and it offers little or no explainability
of the detected anomalies.

Abdi et al. [30] presented a restart-based approach for
limiting the impact of attacks against the controller of
CPSs, leveraging the fact that physical systems cannot be
destabilized instantaneously due to their finite inertia. How-
ever, their solution only works for stateless controllers and
“stable” physical systems, in the sense that can tolerate
short intervals of anomalous behavior without critical con-
sequences.

Hasan and Mohan [31] developed Contego-TEE, a frame-
work that combines TrustZone with an invariant-checking
mechanism to protect Internet of things (IoT) devices from
malicious control commands. Defining a set of invariant
conditions at design time is feasible for simple and single-
task systems; however, it quickly becomes overly compli-
cated and inflexible as system complexity increases.

4 THREAT MODEL

4.1 Threat Scenarios

The current state of the art [7] identifies four main threats
that a compromised industrial robot may pose: physical
damage, production sabotage, denial of service, and loss of
data confidentiality. In this research, we focus on the first
two, which are those that modify the physical behavior of a
system and therefore the most critical ones in the context of
CPSs.

Physical damage. An attacker may change the controller’s
behavior, forcing the robot to perform unexpected actions,
including movements that violate spatial and speed con-
straints. Such actions may result in damage to machinery,
injury to human operators, as well as harm to the robot
itself. This scenario is the most critical one, both because of
its impact on safety and because of the economical damage
resulting from the long-term downtime a successful attack
would cause.

Production sabotage. An attacker may cause small changes
to the controller behavior to inject micro-defects into the
final product, which may translate into an increased failure
rate, shorter lifespan, and lower quality. The impact of this

kind of attack becomes clear when considering that the
final product may be used in safety-critical fields, such as
medical, military, and transportation, potentially resulting
in indirect severe or fatal consequences. In these safety-
critical fields in-depth quality assurance testing is usually
performed to assess the quality of the product before ship-
ping it to the final customer. However, finding the source of
the defects introduced by an attacker is extremely challeng-
ing and may results in significant economic damages [6].

4.2 Attacker Model

We consider attackers knowledgeable of the logical structure
of industrial systems and industrial robots. They know
which software and operating systems are commonly used
in robot controllers and their security features. They can
resort to reverse engineering to learn how to reprogram (or
patch) the LLC to alter the robot’s behavior in a controlled
manner. We distinguish between two main types of attack-
ers according to their system access level.

External attackers. They do not have prior access to factory
systems, but they possess advanced network exploitation
capabilities. They may be able to take over vulnerable robot
controllers exposed to the Internet by means of “industrial
routers”[7], used by vendors to provide remote support,
monitoring and maintenance services. Alternatively, they
might exploit vulnerabilities in other exposed systems, reach
the robot controller throughout the factory local area net-
work (LAN), and bypass any authentication mechanism to
its application programming interfaces (APIs).

Internal attackers. They are insiders with physical access
to the factory, either led by personal motives or manip-
ulated through social engineering techniques. The lack of
restrictions on physical interfaces could allow them to use a
malicious USB drive to infect the controller with malware.
Similarly, they could use any available I/O interface, such
as Ethernet, serial, or CAN ports, to interact with it through
the network.

4.3 Attack Scope

Our scope includes all software attacks that target the LLC.
Attacks that involve physical access are included as long as
the physical interaction is limited to the external interfaces
of the controller. We trust peripheral devices such as sensors
and actuators. In the following, we delineate three notable
attack classes.

Alteration of control loop parameters. An attacker may
change parameters characterizing the control law under
which the robot controller operates. They are usually tuned
at design time to ensure the stability of the control loop.
An alteration may cause anomalies ranging from very slight
variations of the nominal trajectory to system instability and
mechanical breakage of the robot.

Alteration of input processing. An attacker may tamper
with the portion of controller code that processes and de-
codes input signals collected from sensors before they are
used in the control loop. Such an attack would result in the
use of wrong information about the current state of the robot
and, therefore, in performing incorrect actions.
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Alteration of output processing. Similarly, an attacker may
tamper with the portion of controller code that encodes
output signals before sending them to the motor drives. In
this case, the attacker may directly impact the behavior of
actuators after the correct control action has been computed.

We emphasize that attacks affecting the HLC are not
included in our scope; thus, we do not contemplate mali-
cious variations of the robot task. Our detection system uses
the HLC output as a trusted reference against which sensor
signals (also trusted) are verified. Therefore, we assume that
the HLC always delivers correct values for the intended
robot task. We remark that protecting the HLC is already
possible with more traditional techniques, such as trusted
computing [32]. Moreover, being external to the control
loop, operations performed by the HLC can be replicated in
a simulation environment, the output of which can be used
as a reference for checking the output of the real system.

5 JANUS’S APPROACH

The concept behind Janus is that of implementing an ef-
ficient attack detection algorithm directly in the robot con-
troller system, without requiring additional hardware, while
defending it from tampering by potential attackers through
the use of TEE. For the detection of attacks, we export the
control-oriented design of state observers, used in robotics
for, e.g., collision detection [9]. By doing so, we focus on
detecting the physical effects of the attack on the behavior
of the robot, making our approach general and independent
from any specific attack vector and from the robot’s task.
Moreover, our approach does not require external hardware
or any changes to the control algorithm. We execute critical
steps of attack detection in a secure environment using
TrustZone, a security extension of Arm microcontrollers,
which defends the integrity of our system. A key part of this
process involves identifying and securing the critical control
routines and data vital to the detection algorithm, which
must be secured to prevent tampering by any potential
attacker.

5.1 Attack Detection
A state observer is an algorithm that estimates an un-
measurable internal state of a dynamical system, given
some knowledge of its mathematical model and its inputs
and outputs. In our approach, the considered mathematical
model is made of the Ordinary Differential Equations (ODE)
describing the robot’s dynamics; inputs are data from the
HLC; outputs are data sensors’ measurements. One of the
advantages of model-based techniques is that no additional
hardware is needed, and all required data is already avail-
able for the control of the robot.

We base the design of our state observer on the robot
generalized momenta, following an approach initially pro-
posed by De Luca and Mattone [33] for actuator failure
detection and isolation. We consider a generic n-DOF robot
manipulator subject to attacks, the dynamic model of which
is expressed by, e.g., [11]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τK , (1)

where q, q̇, q̈ represent each joint angular position,
velocity, and acceleration; M(q) is the robot inertia matrix;

p ∫ 

p0

CT(q, q)q – g(q)
.

KI r–

–+

+

+

+
.

LLC Robot
q, q
.

τ
HLC

Figure 1: Block diagram representation of the residual gen-
eration algorithm.

C(q, q̇) is the Coriolis/centrifugal matrix; g(q) is the grav-
ity vector; τ is the vector of motor torques; τK represents
the external torques caused by attacks. Note that also in the
model proposed in [33] the attacker’s torque is modeled as
an additive input, as its aim is that of altering the robot’s
movement with malicious commands.

The attack detection strategy consists of two steps. The
first is the generation of a diagnostic signal, called residual
signal, which quantifies the gap between the amount of
torque absorbed by the motors and the amount of torque
that the same motors are estimated to absorb based on
the robot model to follow the reference trajectory. More
specifically, following [33], we define the residual vector r
as

r(t) = KI

[
p(t)−

∫ t

0

(
τ+CT (q, q̇)q̇−g(q)+r

)
ds−p(0)

]
, (2)

where KI is a gain matrix; p = M(q)q̇ is the vector
of generalized momenta of the robot; τ is obtained from
the LLC; q and q̇ are obtained from robot sensors. Figure 1
represents the residual computation in the form of a block
diagram. It can be shown [33] that

ṙ = KI (τK − r) , (3)

meaning that r is a linear, exponentially stable dynamic
system driven by the foreign torque τK . Therefore, the
residual vector remains at zero as long as the robot mo-
tors are generating the amount of torque that is expected
for the given task and there is no external attack torque,
while it increases or decreases in the presence of anomalies,
converging to τK at steady-state, with a time-constant that
shortens as KI increases. We remark that, for our purposes,
the sign of r is irrelevant. Therefore, we define the residual
signal as its euclidean norm r(t) =

∥∥r(t)∥∥.

Threshold design and filtering. In real-world scenarios,
friction and other disturbances that were not explicitly con-
sidered in (1) also affect the robot. In our model, τK absorbs
their effect together with any actual foreign torque; thus,
τK does not remain at zero even in nominal conditions,
and neither does r. To prevent false positives, attack de-
tection requires a second step in which the residual signal is
compared against a threshold rmax(t), and an alarm is only
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Figure 2: State diagram of the LLC with TrustZone-based
attack detection.

raised if r(t) ≥ rmax(t). Defining a threshold involves mak-
ing a trade-off between false positives and false negatives: if
the threshold is set too low, small variations in the physical
characteristics of the robot (e.g., due to wear) could cause a
slight increase in the residual signal and trigger false alarms;
on the other hand, if the threshold is set too high, stealthy
attacks causing microscopic trajectory variations could go
unnoticed or take too much time to be detected.

Threshold design can be made more efficient by filter-
ing the residual signal before evaluating it. In fact, most
environmental disturbances result in high-frequency oscilla-
tions, while signals due to motor torques are physically lim-
ited to lower frequencies. Thus, we consider and evaluate
two filtering options: a low-pass filter can be used to smooth
out the residual signal and set a more stringent threshold,
or the 2-norm of the residual signal calculated on the full
movement of the robot, defined as

r2n(t) =

√∫ t

0

r2(q) dq, (4)

can also be used as the evaluation signal to be compared
with the threshold, raising an alarm when r2n(t) ≥ rmax(t).
In this case, the integration operation is responsible for fil-
tering out high-frequency oscillations. Regardless of the ap-
proach, the cutoff frequency must be evaluated carefully: if
set too low, the filter’s slow response could cause significant
delays in the detection of attacks, while higher frequencies
make the detection expose to noise and/or instantaneous
sensors’ jitters.

5.2 TrustZone-Enforced Security

We take advantage of TrustZone to guarantee the security
of our attack detection system (ADS) so that its detection
capabilities remain intact even in case the LLC software

is completely compromised. We consider an LLC based
on a TrustZone-enabled Arm Cortex-M microcontroller. No
additional hardware, external components, or even modifi-
cations to the control code are required.

First, as shown in Figure 2, we ensure that all robot
control code runs in the normal world, where it can be
easily updated when necessary. All hardware interfaces and
control sensors that the control cycle needs to interact with
are also assigned to the normal world. Conversely, the
attack detection code runs in the secure world, where it
cannot be affected by a malicious actor that obtains control
of the normal world and controller code. Similarly, sensor
data crucial for the detection mechanism is configured to
be accessible solely from the secure world, leveraging the
TrustZone features outlined in Section 2.2, thereby main-
taining its integrity. Indeed, the torque data necessary for
the attack detection routine can be readily calculated using
position and electrical current sensors, typically present in
industrial robots. With these sensors directly interfacing
with the microcontroller, bypassing interactions with other
potentially vulnerable devices, their data can be exclusively
routed to the secure world. This configuration makes it
impractical for an attacker to intercept the sensor data before
it is utilized in the detection routine.

If the control code requires this data, it is transferred via
a secure interface to the normal world.

To call the attack detection algorithm, we set a secure
timer interrupt to periodically trigger a context switch from
the normal world to the secure world, where our attack
detection routine runs. The timer interrupt duration is typi-
cally a multiple of the duration of a control cycle, depending
on the desired detection frequency. Finally, we de-prioritize
interrupts from the normal world so that non-trusted code
has no way of hindering the attack detection process. The
execution flow after our ADS has been implemented, see its
pictorial representation in Figure 2, is as follows:

1. The controller boots into the secure world and config-
ures its hardware, allocating resources to each world.

2. The controller schedules a timer interrupt for the next
execution of the attack detection routine. Then, it per-
forms a context switch to the normal world.

3. Non-secure control code executes and controls robot
movements.

4. When the secure timer interrupt fires, the controller sus-
pends the execution of the control code; it automatically
switches to the secure world and starts executing the
attack detection routine. It calculates the residual signal
and evaluates it by comparing it with the threshold
value. Data used here to execute detection is provided
directly to the secure world.

5a. If no attacks are detected, go to step 2.
5b. If an attack is detected, the controller stops the robot

motors and halts. To resume operation, it requires a
restart.

We remark that, during nominal operation (i.e., steps 2–
5a), the attack detection flow is completely deterministic.
This renders it compatible with the real-time properties of
the LLC, which require each task to have a predictable
and bounded execution time. Finally, we observe that our
approach only requires one context switch from the normal
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world to the secure world (and back) per attack detection
cycle, minimizing its overhead.

6 APPROACH EVALUATION

We implement our ADS using Matlab/Simulink, and we
integrate it into the simulation of a 2-DOF robot manip-
ulator operating in the xy space. The robot characteristics
are listed in Table 1. In our evaluation, first, we test the
effectiveness of our detection algorithm in recognizing at-
tacks. Then, we evaluate the computational overhead in-
troduced by our monitoring system. To do so, we export
the Matlab/Simulink code in C and deploy it on an STM32
Nucleo board. Finally, we estimate the residual from typical
operations of an actual robot, to assess the influence of the
model uncertainties and how they would affect real-world
functioning.

6.1 Evaluation Parameters

Table 1: Characteristics of the simulated robot.

Simulated robot

Links

Length 1 m
Mass 50 kg

Center of Gravity Midpoint

Inertia Matrix

0 0 0
0 0 0
0 0 10

 kg · m2

Motors
Gear Ratio 100

Motor Inertia 0.005 kg · m2 (motor 1)
— 0.002 kg · m2 (motor 2)

P gain Position Loop Kpp1 = Kpp2 = 20
Velocity Loop Kpv1 = Kpv2 = 2.2

I gain Velocity Loop Kiv1 = 44, Kiv2 = 17

Friction model τF (q̇) = 10 + 45 tanh
(
2.3 q̇

38

)
+ 0.48q̇

For the LLC we used a design that involves two inde-
pendent axis controllers for the two robot links. Each one
consists of a P controller, regulating joint position, and a PI
controller, regulating joint velocity.

Table 2: Characteristics of the test trajectories.

Trajectory Total Length Segments length
Linear 1.70 m 1.70 m
Triangle 2.10 m 3x 0.70 m
Square 4.52 m 4x 1.13 m
S-shape 2.69 m 3x0.71 m and 2x0.28m, alternating

We design and run a set of experiments to evaluate, both
in qualitative and quantitative terms, to what extent our sys-
tem is effective in detecting attacks against the LLC. Our test
cases consist of four trajectories inspired by real-world use
cases of industrial robots, namely (1) straight line, inspired
by pick-and-place tasks; (2) triangle and (3) square shapes,
inspired by cutting tasks; (4) S-shape, inspired by painting
tasks. Table 2 illustrates the characteristics of each trajectory.
Each complete trajectory execution takes 10 seconds, and the
velocity profile for each segment of all tests is trapezoidal.

Simulations are executed with a sampling time of 10 ms.
To assess the effectiveness of our ADS, we simulate an
attacker tampering with the LLC. We design several attacks
for each of the three main categories described in Section 4.3,
i.e.:

Table 3: Residual threshold equations.

Evaluation signal Threshold equation
Plain residual rmax(t) = 1.0800× 10−4t+ 2.2000× 10−5

Filtered residual rmax(t) = 8.7620× 10−5t+ 1.0000× 10−5

Residual 2-norm rmax(t) = 2.5463× 10−5t+ 1.7500× 10−6

1) Alteration of control loop parameters: We increase the al-
teration progressively to evaluate if it affects detection,
from slow and shallow oscillations to movements that
exceed the physical capabilities of the robot.

a) Kpvx divided by 10 (Kpv1 = 0.22, Kpv2 = 0.22) and
Kivx multiplied by 10 (Kiv1 = 440, Kiv2 = 170).

b) Kpvx divided by 5 (Kpv1 = 0.44, Kpv2 = 0.44) and
Kivx multiplied by 5 (Kiv1 = 220, Kiv2 = 85).

c) Kpvx multiplied by 10 (Kpv1 = 22, Kpv2 = 22) and
Kivx divided by 10 (Kiv1 = 4.4, Kiv2 = 1.7).

d) Kpvx multiplied by 40 (Kpv1 = 88, Kpv2 = 88) and
Kivx divided by 40 (Kiv1 = 1.1, Kiv2 = 0.425).

2) Alteration of input processing:
a) Injection of noise to the position signal: We add increas-

ing noise to the signal input to simulate attacks aimed
at generating minor modifications.
i) Gaussian distribution with µ = 0, σ = 0.05.

ii) Gaussian distribution with µ = 0, σ = 0.5.
b) Skewing position signal: We modify the input position

signal either of a fixed value or with a gradual
increase, to evaluate detection of abrupt or gradual
modifications to the input of the robot closed loop.
i) Fixed skew by [0.25, 0.25] rad.

ii) Fixed skew by [0.50, 0.50] rad.
iii) Increasing skew with equation y = 5t.
iv) Increasing skew with equation y = 10t.

3) Alteration of output processing:
a) Injection of noise to the position signal: We add different

noise values to the output position signal.
i) Uniform distribution in [-100,100] rad.

ii) Uniform distribution in [-200,200] rad.
b) Torque Output changes: The torque sent to the motors

stops being the one generated by the controller logic
and is maintained at a constant, realistic value.
i) Torque maintained at [30,30] Nm.

ii) Torque maintained at [60,60] Nm.
We also configure our ADS to use, one at a time, the

three evaluation signals described in Section 5.1 so that their
performances can be compared and evaluated separately:
“plain” residual, low-pass-filtered residual (filter cutoff fre-
quency: 10 Hz), residual 2-norm. For each evaluation signal,
we empirically define a threshold function such that non-
zero values caused by friction and other modeling imper-
fections will not trigger an alarm for any test case. Table 3
presents the equations of the functions we defined.

We evaluate the results using two metrics. Time to detec-
tion (TTD) measures the time elapsed between the start of
the attack and its detection. Maximum trajectory deviation
(MTD) represents the maximum distance the manipulator
reaches from the nominal trajectory before the attack is
detected.
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Table 4: Attack detection experimental results. The letter and number that represent attacks refer to section 6.1. For each
test instance, the table displays the TTD and MTD. A missing TTD indicates that the detection system never raised an alert.
P.R. stands for Plain Resolution, L-P for Low-Pass, and 2-N for 2-Norm.

Attack Metric Linear Movement Triangular Movement Square Movement S-shape Movement
P.R. L-P 2-N P.R. L-P 2-N P.R. L-P 2-N P.R. L-P 2-N

None — — — — — — — — — — — —
1a: Kpv/10 s — — 9.38 3.13 0.64 0.62 0.07 0.11 0.09 0.07 0.11 0.09
Kivx10 mm 22.82 22.82 17.57 16.60 6.73 6.73 0.57 1.98 1.32 0.56 1.96 1.30

1b: Kpv/5 s — — — — — — 0.07 0.13 0.11s 0.07 0.13 0.11
Kivx5 mm 1.25 1.25 1.25 5.30 5.30 5.30 0.49 2.36 1.68 0.48 2.33 1.66

1c: Kpvx10 s — — — 0.33 0.27 0.27 0.07 0.13 0.11 0.07 0.13 0.11
Kiv/10 mm 10.59 10.59 10.59 9.78 6.56 6.56 0.61 3.12 2.18 0.60 3.08 2.15

1d: Kpvx40 s 7.24 7.09 3.00 0.22 0.23 0.23 0.06 0.12 0.11 0.06 0.12 0.11
Kiv/40 mm 88.47 88.47 43.99 4.68 5.48 5.48 0.56 2.84 2.25 0.55 2.80 2.22

2(a)i: Gaussian noise s 0.01 0.08 0.01 0.01 0.07 0.01 0.02 0.06 0.04 0.01 0.08 0.04
µ = 0, σ = 0.05 mm 0.23 1.77 0.46 0.20 0.47 1.07 0.07 1.01 1.01 0.11 0.64 1.07

2(a)ii: Gaussian noise s 0.02 0.05 0.01 0.01 0.03 0.01 0.01 0.05 0.01 0.02 0.06 0.03
µ = 0, σ = 0.5 mm 1.59 1.05 0.89 0.04 2.02 1.11 0.06 1.77 0.41 0.07 0.74 2.07

2(b)i: Fixed skew s 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03
[0.25, 0.25] mm 0.21 2.26 1.08 0.21 2.26 1.08 0.21 2.26 1.08 0.21 2.26 1.08

2(b)ii: Fixed skew s 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02 0.01 0.03 0.02
[0.50, 0.50] mm 0.42 2.16 1.26 0.42 2.16 1.26 0.42 2.16 1.26 0.42 2.16 1.26

2(b)iii: Increasing skew s — — — — — — 2.57 2.62 2.35 — — 2.09
y = 5t mm 139.90 139.90 139.90 53.51 53.51 53.51 26.63 27.18 48.65 89.48 89.48 33.07

2(b)iv: Increasing skew s — — — — — 0.08 0.06 2.58 0.07 0.06 — 0.07
y = 10t mm 280.80 280.80 280.80 108.20 108.20 1.74 0.26 53.52 1.31 0.26 181.20 1.31

3(a)i: Uniform noise s 0.56 0.19 0.83 0.24 0.42 0.40 0.06 0.19 0.13 0.05 0.47 0.17
[-100,100] rad mm 3.95 3.50 4.78 1.71 3.03 3.35 0.53 2.54 2.37 0.44 4.36 1.13

3(a)ii: Uniform noise s 0.04 0.08 0.31 0.03 0.10 0.15 0.03 0.08 0.08 0.01 0.12 0.11
[-200,200] rad mm 1.47 3.37 3.73 0.25 3.87 1.27 0.03 3.32 1.41 0.19 2.28 1.40

3(b)i: Torque Output s 0.23 0.30 0.39 0.27 0.32 0.39 0.15 0.19 0.17 0.15 0.22 0.24
[30-30] Nm mm 17.71 31.37 51.99 22.29 32.54 49.49 9.50 16.44 12.17 6.52 13.81 16.54

3(b)ii: Torque Output s 0.12 0.19 0.23 0.13 0.19 0.23 0.09 0.15 0.13 0.16 0.21 0.24
[60-60] Nm mm 10.00 24.51 35.86 11.06 24.06 34.27 5.79 15.38 11.43 14.58 28.08 33.79

6.2 Attack Detection Evaluation

The numerical results of each test run are provided in
Table 4. The first line shows how the detection system
does not trigger false positives if no attack is implemented.
Results show that the system quickly detects all attacks
that provoke high-frequency oscillations or abrupt move-
ments of the manipulator, even if they have a minimal
influence on the robot’s trajectory. For instance, depend-
ing on the trajectory and evaluation signal, the MTD for
attacks 2(a)i 2(a)ii 2(b)i 2(b)ii (Fig 3b) range from 0.04–2.26
mm. In fact, When adding noise to the position signal, the
LLC constantly attempts to compensate with short bursts
of motor torque, resulting in high frequency and low-
amplitude oscillations of the robot arm. Although the robot
deviates of a tiny amount from the nominal trajectory, high
frequency oscillations cause a large residual increase which
is always easily detected.

All attacks from category 1 cause relatively low-
frequency oscillations, whose magnitude increases over
time; as a direct consequence, we observe larger TTDs.
Attacks 1a, 1b, and 1c (Fig 3a) are undetected during the
straight line trajectory aside for one case, due to the slower
movements of the joints. Noticeably, square and s-shaped
movements lead to effective detection, thanks to the in-
creased speed of the motors, with a detection time from
0.07 s up to 0.13 s depending on the filter.

Attacks 2(b)iii and 2(b)iv (Fig 3c) highlight the main
limitation of our approach, already hinted by other unde-
tected attacks: this type of attack causes the position signal
to gradually and continuously drift away from the nominal

value, resulting in a constant offset of the residual signal.
The residual offset is directly proportional to the error in-
creasing rate, making the attack difficult to detect. The attack
is mostly undetected aside for the square shaped trajectory,
with an MTD that varies from 0.26 mm to 53.52 mm when
detected, and which reaches up to 280.80 mm while being
undetected, due to the extremely slow deviation from the
expected path.

Finally, attacks 3a, 3b (Fig 3d), predictably, are easily
detected. The attack, in fact, heavily modifies the residual
as soon as it starts, rapidly triggering detection. This is true
for both the standard residual and the filtered ones.

As expected, the detection time is overall higher when
using the filtered residual and the 2-norm of the residual
as evaluation signals. However, the results also show that
there are instances where the plain residual does not detect
attacks which are instead detected by the 2-norm filter
(1a,2(b)iii,2(b)iv). Interestingly, the low-pass filter instead
does not present any advantage from the plain resolution
signal.

Overall, experimental results show that our ADS is very
effective at detecting attacks that affect the manipulator with
high-frequency oscillations, abrupt movements, or direction
changes, even when their influence on the robot’s trajectory
is in the order of a few millimeters or less. With this kind
of attack, our system can protect industrial robots from
both critical threat scenarios described in Section 4.1: physi-
cal damage and production sabotage. Slow-acting attacks,
whose effects span over periods of tens of seconds, are
more difficult to detect and result in some false negatives.
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(a) Alteration of control loop parameters - Kpvx divided by 10
(Kpv1 = 0.22, Kpv2 = 0.22) and Kivx multiplied by 10 (Kiv1 =
440, Kiv2 = 170) - square movement.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) Alteration of input processing - Gaussian distribution with
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(c) Alteration of input processing - Increasing skew with equa-
tion y=5t - triangular movement.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) Alteration of output processing - Torque output mantained
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Figure 3: Effects of attacks on the slip of the wheels when bounds are crossed.

Table 5: TrustZone execution time requirements.

Operation Time requirement
Context switch to the secure world 0.004 ms
Attack detection routine 1.396 ms
Context switch to the normal world 0.008 ms
Total 1.408 ms

We argue, though, that such attacks pose a limited threat
with respect to physical damage, although they could still
be successful at injecting faults into the product.

6.3 TrustZone Timing Evaluation
The remainder of our evaluation aims to measure the time
efficiency of the proposed solution when deployed on a
TrustZone-enabled physical development board in order to
estimate its impact on the real-time properties of the LLC.

We use the MATLAB and Simulink code generation
functionalities to export the C code of our simulation. Using

STM32CubeIDE, we bring the changes needed in order to
specify which procedures have to be executed in the secure
world, and we add time measuring function calls where
necessary. We upload and execute the code on an STM32
Nucleo L552ZE-Q development board, recording timing
results.

Table 5 illustrates the overhead introduced by our so-
lution in terms of time requirements. It can be noticed
that the total latency caused by world switches has a very
limited impact, and our system spends almost the totality
of the time on the actual execution of the attack detection
routine. Execution times obviously depend on the hardware
characteristics of each microcontroller; our numeric results
can be scaled according to the processor speed to obtain an
estimate of time requirements on other devices. Implement-
ing our solution on a specific LLC without affecting its real-
time properties requires it to be able to carry out both the
usual control computations and the attack detection routine
within the duration of a single control cycle. Based on hard-
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Figure 4: In red the difference between the real-world and
estimated torque for T1, in blue the corresponding residual.

ware characteristics, attack detection can be either set up to
run at each execution cycle or to only run every n cycles. The
former option guarantees the best performances in terms of
TTD and MTD, while the latter trades off detection speed
for a lighter impact on the controller’s resources.

6.4 Empirical Nominal Residual Estimation

To assess the influence of model uncertainties and how they
would affect the real-world functioning of the approach on
the industrial robot used in our experiment, we calculate the
residual from the typical operations of an actual robot.

To achieve this, we measured the torque of the six motors
of the robotic arm controller and then compared these
measurements with their simulated counterparts. Following
this, we calculated the residual of the difference between the
registered torque and the simulated one. Figure 4 displays
the results of the comparison. In the figure, the discrepancy
between the actual and estimated torque is indicated in blue,
and the corresponding residual for motor T1 is highlighted
in red. Data for other motors, which follow similar patterns,
are not included for the sake of clarity. Although a discrep-
ancy exists between the simulated and actual values during
regular operations, as depicted by the blue line, the calcu-
lated residual from these values is minimal. This is further
shown in Table 6, where we provide the mean, variance,
and maximum value of the residual for each motor. Upon
comparing with the detection thresholds estimated in this
work (see Table 3), it’s clear that the residual produced by
the real robot is significantly lower — three orders of mag-
nitude less — than our estimated thresholds. Consequently,
these noises are unlikely to interfere with the identification
of anomalies.

Table 6: Mean, Variance, and Maximum value of the residual
calculated on the real-world motor torques T1-T6 of the six
motors of the robotic arm.

Scaling T1 T2 T3 T4 T5 T6
Mean 10−8 0.1545 0.2416 0.3397 0.0363 0.1180 0.0317

Variance 10−17 0.0633 0.1598 0.2860 0.0063 0.0817 0.0099
Max 10−8 0.2939 0.4242 0.6135 0.0932 0.2292 0.0831

7 CONCLUSIONS

In this paper, we presented Janus, a novel LLC attack
detection approach based on the state observers strategy
and implemented in the robot controller system. Differently
from existing approaches, Janus exploits the Arm trusted
execution environment (TEE) to guarantee the integrity of
the detection capabilities even in case the LLC software
is completely compromised, while being installed on the
same controller and not requiring any additional hardware.
We evaluated the system performance by implementing
it the Matlab/Simulink environment and on a physical,
TrustZone-equipped development board. Experimental re-
sults showed that our solution is very effective at detect-
ing fast-acting attacks, while it has limitations in detecting
slowly-acting ones. In addition, we demonstrated that the
overhead caused by TrustZone technology has a negligible
impact on the final performance.

Given the widespread implementation of TEE technolo-
gies in modern microprocessors, we envision the application
of the same TEE-based monitoring mechanism to other cy-
berphysical domains, such as Industry 4.0 machinery, med-
ical devices, and intelligent transportation systems. How-
ever, given the peculiarities of the different domains, future
works should focus on studying the feasibility of embed-
ding existing detection systems into TEE-based technolo-
gies. Moreover, besides detecting anomalous behavior, fu-
ture works should focus on implementing various context-
dependent reaction strategies, e.g., resetting the micropro-
cessor or switching to a different controller. This is especially
relevant in domains in which attacks may impact the safety
of living beings cooperating with industrial systems.

In order to overcome the limitation related to the lower
performance obtained with slow-acting attacks, future work
will focus on improving the threshold generation pro-
cess. The current solution used a straightforward, empirical
method for its definition. However, it could be worth devel-
oping an adaptive thresholding technique that dynamically
adjusts the detection sensitivity based on the characteristics
of each phase of the robot motion, inspired by the research
works in the field of fault detection and identification, see
e.g., [34, 35, 36].

Finally, future works may expand the threat model
considering adversarial attacks (i.e., adversaries that try to
evade, poison, or extract knowledge from detection models
under attacks). For instance, an interesting use case scenario
may be represented by attackers that exploit the determin-
ism of the system under analysis.
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